Центр оптико-нейронных технологий
ФГУ ФНЦ НИИСИ РАН |
|||||||||||||||||||
|
Рекомендуемая литература
Pattern Recognition Books and Links Below a number of monographs is listed that can be useful for students and researchers in the field of pattern recognition. A list of book announcements received by email can be found here. There is also a general entry on Scientific Publishing Companies. 1.Pattern Recognition and Statistical Learning 2.Neural Networks 3.Machine Learning and Information Theory 4.Image Processing 5.Signal Processing 6.Books of Historical Interest Links on
NeuralNets
1. http://alife.narod.ru/ - сайт С.Терехова 2.
http://www.orc.ru/~stasson/neurox.html
- много ссылок
3.
http://ai-online.narod.ru/documents-neural_networks.html
- (Уоссермен, статьи С.Короткого, Миркес).
4.
http://www.statsoft.ru/home/textbook/modules/stneunet.html
- основы
5.
http://chip.ua/links/neuro/ -
ссылки на ресурсы по нейросетям
6.
http://algolist.manual.ru/ai/neuro/index.php
- выложены книги и статьи
7.
http://www.scintific.narod.ru/neural.htm
- множество ссылок, книг и статей
8.
http://neuroschool.narod.ru/
- выложены наиболее популярные книги, статьи
9.
http://alife.narod.ru/lectures/wavelets2001/
- Вейвлет и нейронные сети//С.А.Терехов
10.
http://ieee-nns.org/
-IEEE Neural Networks Society Home Page
11.
http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html
-An Introduction to Neural Networks
Избранноедля первого
чтения
1.
Ф.Уоссермен.
Нейрокомпьютерная техника. Москва «Мир» 1992.
2.
М.Б.Беркинблит,
С.Г.Глаголева. Электричество в живых организмах. М.Наука 1988
(библ.”Квант” вып.6)
3.
В.Н.Вапник,
А.Я.Червоненскас. Теория распознавания образов. Наука,
1974.
4.
J.
Hertz, A.Krogh, R.Palmer. Itroduction to the Theory of Neural
Computation.
5.
P.
Peretto. An introduction to the Modeling of Neural Networks.
6.
B.
Muller, J.Reinhardt, M.T.Strickland. Neural Networks. An
Introduction. 2nd edition, Springer, 1995.
7.
S.
Haykin. Neural Networks. A Comprehensive Foundation. Macmillan,
1994.
8.
M.
Arbib, ed. The Handbook of Brain Theory and Neural Networks. MIT
Press, 1995.
9.
C.M.Bishop.
Neural networks and pattern recognition.
I. Books on Pattern Recognition
and (Statistical) Learning
1.
A.K.
Suykens, G. Horvath, S. Basu, C. Micchelli, J. Vandewalle (Eds.)
Advances in Learning Theory: Methods, Models and Applications, NATO
Science Series III:
Computer & Systems Sciences, Volume 190, IOS Press Amsterdam,
2003.
2.
M.
I. Schlesinger, V. Hlavбc, Ten Lectures on Statistical and
Structural Pattern
Recognition, Kluwer Academic Publishers, 2002.
3.
D.
J. Hand, H. Mannila and P. Smyth, Principles of Data Mining, MIT
Press, August 2001.
4.
A.Hyvдrinen,
J. Karhunen, and E. Oja, Independent Component Analysis, John Wiley & Sons, 2001.
5.
T.
Hastie, R. Tibshirani, and J. Fridman, The Elements of Statistical
Learning: Data Mining,
Inference, and Prediction, Springer-Verlag, 2001.
6.
R.
O. Duda, P. E. Hart and D. G. Stork, Pattern Classification (2nd
ed.), John Wiley and
Sons, 2001.
7.
S.
Raudys, Statistical and Neural Classifiers, Springer, 2001. G.J. McLachlan and D. Peel,
Finite Mixture Models,
8.
M.
Friedman and A. Kandel, Introduction to Pattern Recognition,
statistical, structural, neural and fuzzy
logic approaches, World Scientific, Signapore, 1999.
9.
D.
J. Hand, J. N. Kok and M. R. Berthold, Advances in Intelligent Data
Analysis, Springer
Verlag,
10.
B.
Schulkopf, C. J. C. Burges, and A. J. Smola, Advances in Kernel
Methods, Support Vector
Learning MIT Press, Cambridge, 1999.
11.
S.
Theodoridis, K. Koutroumbas, Pattern recognition, Academic Press,
1999. A. Webb,
Statistical pattern recognition, Oxford University Press Inc.,
12.
M.
Berthold, D. J. Hand, Intelligent Data Analysis, An Introduction,
Springer-Verlag, 1999.
13.
V.
Cherkassky and F. Mulier, Learning from data, concepts, theory and
methods, John Wiley
& Sons, New York, 1998.
14.
L.
Devroye, L. Gyorfi, G.Lugosi, A Probabilistic Theory of Pattern
Recognition,
15.
E.
Gose, R. Johnsonbaugh, S. Jost, Pattern recognition and image
analysis, Pretice Hall
Inc., 1996.
16.
J.
Schurmann, Pattern classification, a unified view of statistical and
neural approaches, John
Wiley & Sons,
17.
V.N.
Vapnik, The Nature of Statistical Learning Theory, Springer,1996.
B. Ripley, Pattern
Recognition and Neural Networks,
18.
Press,
19.
D.
Paulus and J. Hornegger, Pattern Recognition and Image Processing in
C++, Vieweg,
Braunschweig, 1995.
20.
R.
Schalkhoff, Pattern Recognition, statistical, structural and neural
approaches, John Wiley
and Sons,
21.
G.J.
McLachlan, Discriminant Analysis and Statistical Pattern
Recognition, John Wiley
and Sons,
22.
B.
V. Dasarathy, Nearest neighbor(nn) norms: NN pattern classification
techniques, IEEE
Computer Society Press, Los Alamitos, 1991.
23.
S.M.
Weiss and C.A. Kulikowski, Computer Systems that Learn, Morgan
Kaufmann, San Mateo,
California, 1991.
24.
K.
Fukunaga, Introduction to Statistical Pattern Recognition (Second
Edition), Academic
Press,
25.
Y.H.
Pao, Adaptive Pattern Recognition and Neural Networks, Addison
Wesley,
26.
Satoshi
Watanabe, Pattern Recognition, Human and Mechanical, John Wiley
& Sons,
27.
T.Y.
Young and K.S. Fu, Handbook of Pattern Recognition and Image
Processing, Academic
Press,
28.
L.
Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classification
and regression trees,
29.
P.A.
Devijver and J. Kittler, Pattern Recognition, a Statistical
Approach, Prentice
Hall,
30.
R.C.
Gonzalez and M.G. Thomason, Syntactic pattern recognition - An introduction, Addison-Wesley,
31.
J.
Sklanski and G.N. Wassel, Pattern Classifiers and Trainable
Machines, Springer,
32.
R.O.
Duda and P.E. Hart, Pattern classification and scene analysis, John
II. Books on Neural
Networks
1.
P.
Dayan, L.F. Abbott, Theoretical Neuroscience, Computational and
Mathematical Modeling
of Neural Systems , MIT Press, December 2001.
2.
U.
Seiffert, L.C. Jain (editors), Self-Organizing Neural Networks:
Recent Advances and
Applications (Studies in Fuzziness and Soft Computing), Springer-Verlag, November
2001.
3.
W.
Maass and C. M. Bishop, editors, Pulsed Neural Networks, MIT Press,
4.
S.
Amari,
5.
G.
B. Orr, K-R. Mьller (editors), Neural Networks: Tricks of the Trade,
Springer-Verlag Berlin
Heildeberg, 1998.
6.
T.
Kohonen, Self-Organizing Maps, Springer,
7.
C.
M. Bishop, editor, Neural Networks and Machine Learning 1997 NATO
Advanced Study
Institute, Springer 1998.
8.
P.
Smolensky, M. C. Mozer, and D. E. Rumelhart, Mathematical
Perspectives on Neural
Networks, Lawrence Erlbaum Associates, Inc. Mahwah, New Yersey,
1996.
9.
Y.
Bengio, Neural networks for speech and sequence recognition,
International Thomson
Publishing,
10.
LiMin
Fu, Neural Networks in Computer Intelligence, McGraw-Hill, Inc.,
11.
S.
Haykin, Neural Networks, A Comprehensive Foundation,
12.
S.Y.
Kung, Digital Neural Networks, Prentice Hall,
13.
Stephen
I. Gallant, Neural Network Learning and Expert systems,
Massachusetts Inst. of
Technology,
14.
Cichocki
and R. Unbehauen, Neural Networks for Optimization and Signal Processing, John Wiley &
Sons,
15.
H.
Chen, L. F. Pau, P. S. P. Wang, Handbook of Pattern Recognition and
Computer Vision, World
Scientific,
16.
Kosko,
Neural networks for signal processing, Prentice-Hall,
17.
J.M.
Zurada, Artificial Neural Systems, West Publishing,
18.
John
Hertz, Anders Krogh, and Richard G. Palmer, Introduction to the
Theory of Neural
Computation, Addison Wesley Publ. Comp., Redwood City ,CA, 1991.
19.
J.
Diederich, Artificial neural networks - Concept learning, IEEE
Computer Society Press,
Los Alamitos, 1990.
20.
P.D.
Wasserman, Neural Computing, theory and practice, Van
21.
Aleksander,
Neural Computing Architectures,
22.
S.
Grossberg, The Adaptive Brain I: Cognition, Learning, Reinforcement,
and Rythm,
Elsevier/North
23.
S.
Grossberg, The Adaptive Brain II: Vision, Speech, Language and Motor
Control, Elsevier/North
III. Books on Machine
Learning
1.
D.J.C.
MacKay, Information Theory, Inference, and Learning Algorithms,
2.
B.
Apolloni, D. Malchiodi and S. Gaito, Algorithmic Inference in
Machine Learning,
International Series on Advanced Intelligence, Vol. 5, Advanced
3.
Knowledge
International, 2003.
4.
J.A.K.
Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle,
Least Squares Support
Vector Machines, World Scientific Pub.
5.
B.
Schцlkopf and A.J. Smola, Learning with Kernels, Support Vector
Machines, Regularization, Optimization,
and Beyond, MIT Press, Cambridge, 2001.
6.
N.
Cristinanini and J. Shawe-Taylor, An Introduction to Support Vector
Machines, Cambridge
University Press, Cambridge, UK, 2000.
7.
B.
Schцlkopf, C.J.C. Burges and A.J. Smola (editors), Advances in
Kernel Methods, Support
Vector Learning, MIT Press,
8.
T.M.
Mitchell, Machine learning,
9.
J.R.
Quinlan, C4.5: Programs for machine learning, Morgan Kaufmann
Publishers,
10.
B.K.
Natarajan, Machine learning, Morgan Kaufmann Publ,
IV.
Books on Signal Processing
1.
Papoulis
and S.U. Pillai, Probability, Random Variables and Stochastic Processes, McGraw-Hill, 4th
edition, 2002.
2.
P.
Denbigh, System Analysis and Signal Processing, Addison-Wesley,
3.
H.
J. A. M. Heijmans, J. B. T. M Roerdink, Mathematical morphology and
its applications to
image and signal processing, Kluwer Academic Publishers, Boston/Dordrecht/London,
1998.
4.
V.K.
Madisetti and D.B. Williams, editors, The Digital Signal Processing
Handbook, IEEE
Press/CRC Press, 1997.
5.
D.
Eberly, Ridges in Image and Data Analysis Kluwer Academic
Publishers, Boston/Dordrecht/London,
1996.
6.
J.
J. K. Ruanidh, W. J. Fitzgerald, Numerical Bayesian Methods Applied
to Signal Processing,
Springer Verlag, Berlin, 1996.
7.
G.
R. Wilson, K. W. Baugh, M. D. Ladd, and R. D. Priebe, Higher-order
statistical signal
processing, Longman, Australia, 1995.
8.
A.Cichocki,
R. Unbehauen, Neural Networks for Optimization and Signal Processing, John Wiley &
Sons,
9.
D.
H. Johnson, D. E. Dudgeon, Array signal processing, Prentice-Hall,
1993.
10.
L.
Rabiner, B.-H. Juang, Fundamentals of Speech Recognition
Prentice-Hall,
11.
B.
Kosko, Neural networks for signal processing, Prentice-Hall,
12.
J.
G. Proakis, D. G. Manolakis, Digital signal processing - principles,
algorithms and
applications, 2nd ed., MacMillan Publ.,
13.
D.E.
Dudgeon and R.M. Mersereau, Multidimensional digital signal
processing, Prentice-Hall, Inc, Englewood
Cliffs, 1984.
14.
A.V.
Oppenheim, A.S. Willsky, and I.T. Young, Signals and Systems, Prentice-Hall, 1983.
15.
Papoulis,
Signal Analysis, McGraw-Hill, 1977.
16.
R.N.
Bracewell,The Fourier Transform and its Applications, McGraw-Hill,
third edition,
2000,1965.
17.
Books
of Historical Interest
18.
K.
Fukunaga, Introduction to Statistical Pattern Recognition (First
Edition), Academic
Press,
19.
J.M.
Mendel and K.S. Fu, Adaptive, learning, and pattern recognition
systems: theory and
applications, Academic Press,
20.
M.
Minsky and S. Papert, Perceptrons: An Introduction to Computational
Geometry, MIT Press,
21.
A.G.
Arkadev and E.M. Braverman, Teaching Computers to Recognize
Patterns, Academic
Press,
22.
23.
G.S.
Sebestyen, Decision-Making Processes in Pattern Recognition,
24.
Rosenblatt,
F., Principles of Neurodynamics: Perceptrons and the theory of brain mechanisms, Spartan
Books,
|
||||||||||||||||||
© Центр оптико-нейронных технологий
Федеральное государственное учреждение Федеральный научный центр Научно-исследовательский институт системных исследований Российской академии наук All rights reserved. 2016 г. |