Микроконтроллер Комдив—МК К5500ВК018

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

диапазон рабочих температур от -40 до +85°C

частота процессорного ядра до 300 МГц

напряжение питания 1.0, 1.35/1.5, 3.3B

Максимальная потребляемая мощность 0.5 Вт

технология изготовления КМОП 65 нм

корпус BGA 256 металлополимерный

размер корпуса 17х17х1.6 мм

Программное обеспечение:

- ОС РВ Багет 2.6
- библиотеки поддержки протоколов
- инструментальные средства

Микросхема К5500ВК018 — малопотребляющий микроконтроллер «Комдив-МК» на основе отечественных IP-блоков для применения в устройствах промышленного интернета вещей. Микроконтроллер включает суперскалярное 64-разрядное RISC-микропроцессорное ядро с архитектурой КОМДИВ64 и встроенные системные и периферийные контроллеры.

Микросхема К5500ВК018 предназначена для применения в качестве управляющего контроллера в автоматизации объектов ТЭК, промышленности, ЖКХ, транспорта и т.п., контроллера сбора и обработки данных в распределенных системах управления при автоматизации технологически-сложных объектов.

Основные выполняемые функции: прием информации с датчиков, в том числе аналоговых и по интерфейсам последовательной связи; нормализация измеренных величин; ПИД-регулирование; циклическое самотестирование; управление актуаторами; информационное взаимодействие с верхним управляющим уровнем.

Обширный набор периферийных контроллеров позволяет строить на основе Комдив-МК системы автоматического управления для широкого спектра применений и гибко настраивать для различных задач.

Состав Комдив-МК

Ядро

- 64-разрядное целочисленное ядро с архитектурой КОМДИВ64 (MIPS-совместимое);
- сопроцессор вещественной арифметики, соответствующий стандарту IEEE754, поддерживающий форматы представления вещественных чисел одинарной (32 разряда) и двойной (64 разряда) точности, а также формат «пара вещественных чисел одинарной точности»;
- ассоциативный буфер трансляции виртуальных адресов (jTLB) на 64 адреса (128 страниц);
- кэш-память данных 1-го уровня (16 кбайт) и инструкций (16 кбайт);
- общая кэш-память 2-го уровня для данных и инструкций размером 128 кбайт (4 секции);
- 128-разрядная внутренняя шина;
- 7-ступенчатый суперскалярный конвейер с предвыборкой инструкций и возможностью выполнения двух команд за такт.

Память

Встроенное ОЗУ статического типа объемом 512 кбайт.

Встроенные контроллеры

Контроллер динамической памяти

Контроллер поддерживает до 2 Гбайт синхронной динамической памяти типа DDR3/DDR3L SDRAM, при этом логическая модель контроллера памяти одинакова для DDR3 с напряжением питания 1,5 В и для DDR3L с напряжением питания 1,35 В. Разрядность шины данных 16 бит.

Блок таймеров

Блок включает 8 однотипных независимых 64-разрядных таймеров-счётчиков и 64-разрядный сторожевой (WatchDog) таймер. Работа всех таймеров возможна также в 32-разрядном режиме. Каждый таймер -счётчик и сторожевой таймер программируется независимо, имеет программируемый предделитель частоты и работает на одной их двух частот - опорной и внешней. Отмеряемые временные интервалы от 1 такта. Типовое время срабатывания сторожевого таймера — 10 с. Любой таймер-счетчик также может быть сторожевым.

Таймеры поддерживают функции регистрации событий, режимы ШИМ и меандр.

МИКРОКОНТРОЛЛЕР КОМДИВ-МК К5500ВК018

Контроллер прерываний

Контроллер прерываний на 48 входов перераспределяет все прерывания на 10 линий запросов на прерывание процессору (используется 6 из 10 в соответствии с архитектурой ядра). Поддерживает арбитрацию одновременных запросов, которые распределены на одну линию процессора, по фиксированным приоритетам; возвращает запрограммированный вектор прерывания в соответствии с приоритетом

Блок регистров системного контроллера

Конфигурационные регистры системного контроллера управляют поведением системы в целом (частоты, режимы и пр.).

Контроллеры Ethernet

Два контроллера Ethernet поддерживают режимы 10/100 Мбит/с, полу-/ полный дуплекс; внутреннюю и внешнюю петли для диагностических целей; механизмы борьбы с блокировками канала Ethernet; управление пото-ком в соответствии со стандартом IEEE 802.3-2005; набор гибких схем адресной фильтрации входящих пакетов. Имеется интерфейс МІІ (RMII) для связи с РНУ.

Контроллер EtherCAT

Блок контроллера содержит два порта EtherCAT, подключённых к тем же выводам, что и Ethernet.

Блок каждого из двух портов EtherCAT производит прием и передачу данных от внешней микросхемы приемопередатчика Ethernet 100 МБит/с с использованием интерфейса МІІ, управляет функционированием микросхемы приемопередатчика Ethernet по интерфейсу управления МІ (management interface).

Контроллеры последовательных интерфейсов RS-232C

В микросхеме присутствует 5 контроллеров.

Интерфейс контроллера последовательных портов программно совместим с регистрами и логикой работы микросхемы A16450, дополненной приёмным и передающим буферами FIFO глубиной 255 байта каждый. Для мониторинга статуса заполненности буферов были введены дополнительные регистры, делящие адресное пространство со стандартными регистрами. Для ускорения доступа к дополнительным регистрам предусмотрен отключаемый режим несовместимости со стандартной программной моделью.

Контроллер шины І2С

В микросхеме присутствуют 3 контроллера I2C, выполняющие передачу данных на частотах 100 кГц, 400 кГц и 1 МГц. Контроллеры позволяют работать в режиме ведущего (master) и ведомого (target) с поддержкой основной адресации (7 бит) и расширенной (10 бит). При наличии нескольких ведущих на шине выполняется штатная арбитрация.

Контроллер интерфейса QSPI

Контроллер QSPI (Serial Peripheral Bus) является контроллером загрузочного ПЗУ. По включению питания осуществляет протокол загрузки, совместимый с обычным SPI.

Контроллер реализует режим ведущего. Включает DMA-контроллер для пакетных передач из/в память (поток данных сформирован в памяти). Доступен отображенный в память канал чтения из QSPI ведомого с аппаратной реализацией протокола QSPI. Адресуется одно устройство (CS). В адресное пространство процессора отражено прямо адресуемое окно размером в 1 Мбайт.

Контроллер интерфейса SPI

В микросхеме присутствуют 3 контроллера SPI, функционирующие в режиме ведущего с с выбором до 4 устройств (SPI0 - 4CS, SPI1 – 4 CS, SPI2 – 1CS). Включает DMA-контроллер для пакетных передач из/в память. В адресное пространство процессора отражено прямо адресуемое окно размером в 16 Мбайт от каждого контроллера.

Программируемая скорость до 12 Мбит/с.

Контроллер прямого доступа в память

12-канальный контроллер DMA (IDMA) поддерживает передачи память-память, память-ЦАП и АЦП-память, память — UART в обе стороны. Задавать передачу можно как с использованием цепочки дескрипторов, так и в регистрах.

Контроллер интерфейса CAN

В микросхеме присутствуют 2 контроллера, поддерживающие протокол CAN 2.0A/В с программируемой скоростью передачи информации до 1 Мбит/с; стандартный/расширенный тип сообщений; удаленный запрос данных; 32 независимых буфера, работающих либо на приём, либо на передачу; аппаратную фильтрацию принимаемых сообщений для каждого приёмного буфера отдельно; режима автоответа при удалённом запросе; режим самотестирования.

МИКРОКОНТРОЛЛЕР КОМДИВ-МК К5500ВК018

Контроллер интерфейса USB

Контроллер USB для встроенных применений представляет собой Host-контроллер интерфейсов USB 2.0 и USB 1.1. Для связи с приёмопередатчиками USB используется интерфейс ULPI.

Блок АЦП

Блок АЦП предназначен для измерений и контроля напряжений внешних и внутренних датчиков. Внешних каналов — 8, внутренних — 3, разрядность — 12 бит. Скорость выборок — не менее 50 в секунду. Поддерживаются следующие режимы:

- режимы преобразования: однократный режим, режим сканирования, прерывистый режим;
 - унитарный и дифференциальный режим измерения с усреднением или без усреднения измеряемых параметров;
- режим автокалибровки для автоматической подстройки шкалы измерений;
- программный запуск измерений или автоматический запуск по событиям от таймеров или внешнего сигнала;
- режим экономичного энергопотребления с отключением блока АЦП

Блок АЦП включает индивидуальные цифровые компараторы на каждый канал измерений и внутренний буфер измерений с возможностью DMA-передачи измерений «контроллер-память».

Блок также позволяет измерять внутренние параметры микросхемы, такие как температуру и напряжения.

Блок ЦАП

Контроллер ЦАП предназначен для выставления заданного уровня напряжения относительного опорного на выводах микросхемы. Контроллер ЦАП реализует 4 аналоговых канала. Разрядность канала составляет 14 бит, частота выставления кодов — до 500 кГц. Поддерживаются 2 режима работы ЦАП: статический, с заданием значением в регистре, и DMA — требуемый уровень напряжения задаётся списком значений в памяти.

Host-контроллер SDHC/SDIO

Контроллер внешних устройств SDIO пригоден для построения высокоскоростных сетевых средств защиты с функциями криптографической защиты и совместим со спецификациями "SD Host controller Standard Specification Version 4.2", "SD Physical Layer Version 3.01", "MMC Specification Version 4.5". Поддерживает 1- и 4-разрядные интерфейсы SDIO, сигналы детектирования карты и защиты от записи, прерывания и режимы передачи ADMA2. Контроллер позволяет вычислять CRC для данных и команд, программировать частоту тактового сигнала для SDIO. Внутренняя буферная память размером 2 кбайта определяет максимальный размер блока данных. Есть возможность детектирования таймаута при передачах.

Контроллер часов реального времени RTC

Контроллер RTC предназначен для отсчета реального времени, содержит 100 летний (2000-2099 гг.) Григорианский календарь (год, месяц, день и день недели) с учетом високосных годов. Время с точностью до секунды представлено в 24-часовом формате (часы, минуты, секунды). Минимальное программно-видимое разрешение часов 500 мс. Имеется встроенный однократный/регулярный будильник. Возможна цифровая подстройка точности хода часов.

Блок квадратурного декодера

Квадратурный декодер преобразует цифровой сигнал с датчика положения вала, позволяя вычислять скорость, направление вращения, а также текущее положение вала. Содержит антидребезговый фильтр.

Блок разовых команд GPIO

Блок разовых команд содержит 48 управляющих линий ввода-вывода, разделённых на 6 портов. Все 8 линий каждого порта могут быть использованы на выход в качестве управляющих сигналов и выставлять прерывание по изменению уровня входного сигнала.

Предусмотрены фильтрация дребезга на входе порта, защёлкивание временной метки события на входе порта.

Контроллер внутрисхемной отладки ЕЈТАС

Контроллер EJTAG обеспечивает отладочный режим (Debug Mode), загрузку ПО по JTAG, возможность остановки ядра по команде из отладчика, возможность чтения памяти DDR и архитектурно-видимых регистров в режиме отладки, возможности выполнения пошаговой отладки ПО в исходных кодах (языках C, C++) при помощи отладчика (требуется поддержки со стороны ПО отладчика).

Блок управления режимами энергосбережения

Блок предназначен для программного отключения тактовой частоты не-используемых блоков микроконтроллера.

Документация

Технические условия (ТУ)

Справочный лист (Д1)

Указания по применению (Д4)

Описание системы команд (Д6)

Схема электрическая структурная (Э1)

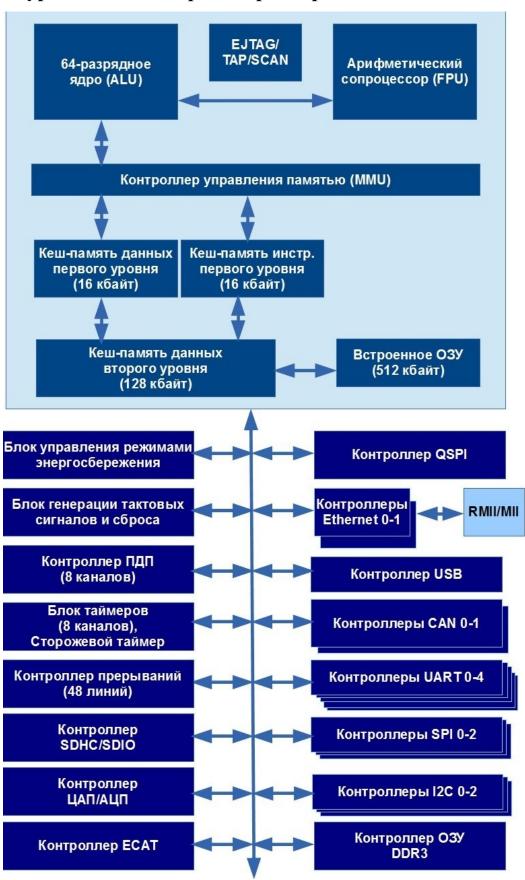
Габаритный чертеж (ГЧ)

Программное обеспечение

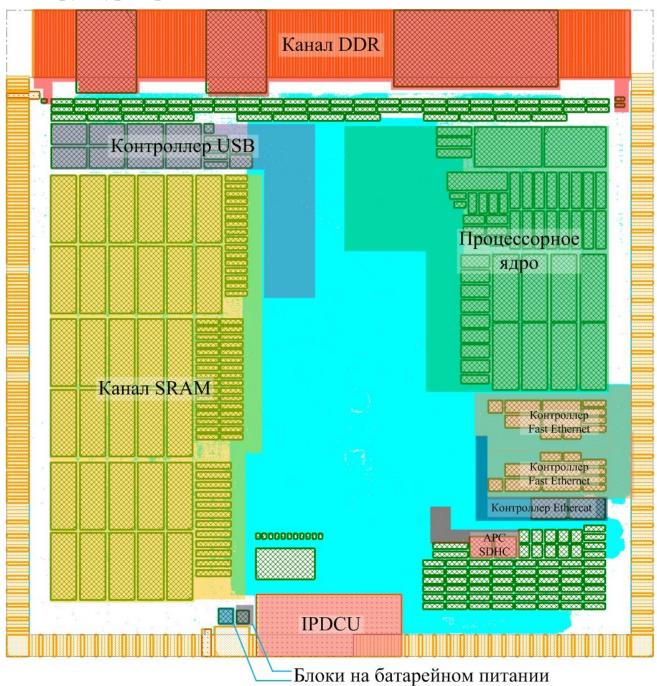
Программирование микроконтроллера осуществляется на языке С для работы в среде операционной системы реального времени ОС РВ Багет 2.6. Инструментальное кросс-средство программирования Си-компилятор СКРВ Багет 3.3 функционирует на инструментальной ЭВМ в среде ОС Linux. Для отладки программ применяется отладчик ОРВ 2.6.

Для микроконтроллера K5500BK018 разработаны библиотеки программ, работающие в среде ОС РВ Багет 2.6 и обеспечивающие работу со специализированными протоколами:

- Modbus RTU
- Modbus TCP
- MЭК 60870-5-101
- MЭК 60870-5-104
- OPC UA


Возможна также разработка программ для работы в среде ОС Linux, функционирующей на микроконтроллере.

Аппаратные средства разработки


Программируемый логический контроллер ПЛК «Багет-ПЛК1-01» ЮКСУ.421457.002-01 на базе микроконтроллера К5500ВК018 применяется в качестве отладочной платы для разработки программного обеспечения и освоения возможностей микроконтроллера.

On-line заказ изделий https://www.niisi.ru/zakaz.htm

Структурная схема микроконтроллера

Структура кристалла

Дополнительная информация:

117218, Москва, Нахимовский проспект, 36, к.1

niisi@niisi.msk.ru https://www.niisi.ru